
Part I Problems 

Problem 1: Use the Euler method and the step size .1 on the IVP 
y′ 2= x + y , y(0) = 1, to calculate an approximate value for the solution y(x) when 
x = .1, .2, .3. (Make a table.) Is your answer for y(.3) too high or low? 



Part II Problems 

Problem 1: [Euler’s method] (a) Write y for the solution to y→ = 2x with y(0) = 0. What is 
y(1)? What is the Euler approximation for y(1), using 2 equal steps? 3 equal steps? What 
about n steps, where n can now be any natural number? (It will be useful to know that 
1 + 2 + · · · + (n � 1) = n(n � 1)/2.) As n � ∞, these approximations should converge to 
y(1). Do they? 

(b) In the text and in class it was claimed that for small h, Euler’s method for stepsize h 
has an error which is at most proportional to h. The n-step approximation for y(1) has 
h = 1/n. What is the exact value of the difference between y(1) and the n-step Euler 
approximation? Does this conform to the prediction? 
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